Biomarcadores da tuberculose: uma revisão da literatura.
DOI:
https://doi.org/10.21674/2448-0479.51.28-47Keywords:
biomarcadores, diagnóstico, Mycobacterium tuberculosis, soroAbstract
A tuberculose é uma infecção micobacteriana comumente causada pelo agente etiológico Mycobacterium tuberculosis, podendo também ser desencadeada por outras bactérias do gênero Mycobacterium. Ainda que bem documentada, mais de um século após sua descoberta, situa-se como a doença infecciosa que mais mata no mundo. Configura-se também problema socioeconômico importante, atingindo em especial as camadas mais pobres da população e comprometendo seriamente sua capacidade produtiva. Os métodos diagnósticos tradicionais para a doença consistem da baciloscopia e cultura, recentemente adotando os testes moleculares rápidos, todos com limitações significativas, como a incapacidade de discriminar entre casos de tuberculose ativa e latente, sensibilidade inconsistente e incapacidade de oferecer prognósticos. A presente revisão da literatura procurou elucidar os atuais avanços na pesquisa de biomarcadores da infecção nos últimos 5 anos com o emprego da metodologia ELISA. Foram verificadas e comparadas evidências apresentadas pelos estudos e as performances diagnósticas alcançadas em cada contexto. Constatou-se uma evidente heterogeneidade nas respostas imunológicas entre populações e indivíduos, provável fruto da diversidade genética do patógeno que possui linhagens intercontinentais e regionais, bem como diferenças particulares nas expressões de alguns biomarcadores, seja por variáveis genéticas ou mesmo outras doenças de base; a homologia dos antígenos pesquisados com outras espécies de bactérias também foi uma problemática. Fica claro que questões genéticas particulares de populações e do próprio agente infeccioso precisam ser melhor consideradas nesses estudos, a fim de alcançar um perfil sorológico suficientemente sensível e específico para triagem clínica e diagnóstico destes pacientes.
Downloads
References
AABYE, M. G. et al. A simple method to quantitate IP-10 in dried blood and plasma spots. PLoS ONE, [s. l.], v. 7, n. 6, p. e39228, 2012.
AFZAL, M. et al. Fusion of selected regions of mycobacterial antigens for enhancing sensitivity in serodiagnosis of tuberculosis.
Journal of Microbiological Methods, [s. l.], v. 115, p. 104–111, 2015.
ALBANNA, A. S. et al. Serum lipids as biomarkers for therapeutic monitoring of latent tuberculosis infection. European Respiratory Journal, [s. l.], v. 42, n. 2, p. 547–550, 2013.
ANDERSSON, J. et al. Impaired Expression of Perforin and Granulysin in CD8+ T Cells at the Site of Infection in Human Chronic Pulmonary Tuberculosis. Infection and Immunity, [s. l.], v. 75, n. 11, p. 5210–5222, 2007.
ASHENAFI, S. et al. Progression of clinical tuberculosis is associated with a Th2 immune response signature in combination with elevated levels of SOCS3. Clinical Immunology, [s. l.], v. 151, n. 2, p. 84–99, 2014.
ATKINSON, A. J. et al. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clinical Pharmacology & Therapeutics, [s. l.], v. 69, n. 3, p. 89–95, 2001.
AWONIYI, D. O. et al. Detection of a combination of serum IgG and IgA antibodies against selected mycobacterial targets provides promising diagnostic signatures for active TB. Oncotarget, [s. l.], v. 8, n. 23, p. 37525–37537, 2017.
BANERJEE, D. et al. Racial and Ethnic Variation in Lipoprotein (a) Levels among Asian Indian and Chinese Patients. Journal of Lipids, [s. l.], v. 2011, p. 1–6, 2011.
BAUMANN, R. et al. Serodiagnostic markers for the prediction of the outcome of intensive phase tuberculosis therapy. Tuberculosis, [s. l.], v. 93, n. 2, p. 239–245, 2013.
BAUMANN, R. et al. Serologic diagnosis of tuberculosis by combining Ig classes against selected mycobacterial targets. Journal of Infection, [s. l.], v. 69, n. 6, p. 581–589, 2014.
BHATTACHARYYA, T. et al. IgG1 as a Potential Biomarker of Post-chemotherapeutic Relapse in Visceral Leishmaniasis, and Adaptation to a Rapid Diagnostic Test. PLoS Neglected Tropical Diseases, [s. l.], v. 8, n. 10, p. e3273, 2014.
BLACK, G. F. et al. Immunogenicity of novel DosR regulon-encoded candidate antigens of mycobacterium tuberculosis in three high-burden populations in Africa. Clinical and Vaccine Immunology, [s. l.], v. 16, n. 8, p. 1203–1212, 2009.
BOHL, D. D. et al. Is Hypoalbuminemia Associated With Septic Failure and Acute Infection After Revision Total Joint Arthroplasty? A Study of 4517 Patients From the National Surgical Quality Improvement Program. The Journal of arthroplasty, [s. l.], v. 31, n. 5, p. 963–7, 2016.
BRASIL. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância Epidemiológica. Manual Nacional de Vigilância Laboratorial da Tuberculose e outras Micobactérias. Brasília, DF, 2008. Disponível em: <http://bvsms.saude.gov.br/bvs/publicacoes/manual_vigilancia_laboratorial_tuberculose.pdf>. Acesso em: 01 dez. 2018.
CAI, Y. et al. Increased Complement C1q Level Marks Active Disease in Human Tuberculosis. PLoS ONE, [s. l.], v. 9, n. 3, p. e92340, 2014.
CAO, S. H. et al. Screening of Serum Biomarkers for Distinguishing between Latent and Active Tuberculosis Using Proteome Microarray. Biomedical and environmental sciences : BES, [s. l.], v. 31, n. 7, p. 515–526, 2018.
CEGIELSKI, J. P.; ARAB, L.; CORNONI-HUNTLEY, J. Nutritional Risk Factors for Tuberculosis Among Adults in the United States, 1971–1992. American Journal of Epidemiology, [s. l.], v. 176, n. 5, p. 409–422, 2012.
CHADHA, V. K. et al. Sensitivity and specificity of screening tools and smear microscopy in active tuberculosis case finding. Indian Journal of Tuberculosis, [s. l.], jun. 2018.
CHALMERS, J. D. et al. No Strong Relationship Between Components of the Lectin Pathway of Complement and Susceptibility to Pulmonary Tuberculosis. Inflammation, [s. l.], v. 38, n. 4, p. 1731–1737, 2015.
CHEN, C. et al. Identification of a novel serum biomarker for tuberculosis infection in Chinese HIV patients by iTRAQ-based quantitative proteomics. Frontiers in Microbiology, [s. l.], v. 9, n. FEB 26, p. 330–343, 2018.
CHEN, T. et al. Profiling the human immune response to Mycobacterium tuberculosis by human cytokine array. Tuberculosis, [s. l.], v. 97, p. 108–117, 2016.
CHEN, Y. et al. Potential role for Rv2026c- and Rv2421c- specific antibody responses in diagnosing active tuberculosis. Clinica Chimica Acta, [s. l.], v. 487, p. 369–376, 2018.
CHUNG, W. Y. et al. The Usefulness of Serum CXCR3 Ligands for Evaluating the Early Treatment Response in Tuberculosis: A Longitudinal Cohort Study. Medicine (United States), [s. l.], v. 95, n. 17, p. e3575, 2016.
CLIFF, J. M. et al. Distinct phases of blood gene expression pattern through tuberculosis treatment reflect modulation of the humoral immune response. Journal of Infectious Diseases, [s. l.], v. 207, n. 1, p. 18–29, 2013.
COSCOLLA, M.; GAGNEUX, S. Consequences of genomic diversity in mycobacterium tuberculosis. Semin Immunol., 26(6), 431-44, 2014. DOI: 10.1016/j.smim.2014.09.012.
DANIEL, T. M. The history of tuberculosis. Respiratory Medicine, [s. l.], v. 100, n. 11, p. 1862–1870, 2006.
DATTA, M. et al. Anti-vascular endothelial growth factor treatment normalizes tuberculosis granuloma vasculature and improves small molecule delivery. Proceedings of the National Academy of Sciences of the United States of America, [s. l.], v. 112, n. 6, p. 1827–32, 2015.
DENKINGER, C. M. et al. Gamma Interferon Release Assay for Monitoring of Treatment Response for Active Tuberculosis: an Explosion in the Spaghetti Factory. Journal of Clinical Microbiology, [s. l.], v. 51, n. 2, p. 607–610, 2013.
FAHEY, R. C. Novel thiols of prokaryotes. Annu Rev Microbiol, [s. l.], v. 55, n. 1, p. 333–356, 2001.
FENG, X. et al. Enhanced serodiagnostic utility of novel Mycobacterium tuberculosis polyproteins. Journal of Infection, [s. l.], v. 66, n. 4, p. 366–375, 2013.
FOGEL, N. Tuberculosis: A disease without boundaries. Tuberculosis (Edinb), v. 95(5), 527-31, 2015. DOI: 10.1016/j.tube.2015.05.017. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/26198113>. Acesso em: 5 dez. 2018.
FUJITA, Y. et al. Diverse humoral immune responses and changes in IgG antibody levels against mycobacterial lipid antigens in active tuberculosis. Microbiology, [s. l.], v. 151, n. 6, p. 2065–2074, 2005.
GAW, A. et al. Comparative analysis of the apo(a) gene, apo(a) glycoprotein, and plasma concentrations of Lp(a) in three ethnic groups. Evidence for no common "null" allele at the apo(a) locus. Journal of Clinical Investigation, [s. l.], v. 93, n. 6, p. 2526–2534, 1994.
GOUMANS, M. J.; LIU, Z.; TEN DIJKE, P. TGF-β signaling in vascular biology and dysfunction. Cell Research, v.19, p. 116–127, 2009.
GUGGINO, G. et al. Granzyme A as a potential biomarker of Mycobacterium tuberculosis infection and disease. Immunology Letters, [s. l.], v. 166, n. 2, p. 87–91, 2015.
GUPTA, R. K. et al. Impact of human immunodeficiency virus and CD4 count on tuberculosis diagnosis: Analysis of city-wide data from Cape Town, South Africa. International Journal of Tuberculosis and Lung Disease, [s. l.], v. 17, n. 8, p. 1014–1022, 2013.
GUPTA, S. et al. IgG subclass antibody response to mycobacterial serine protease at different stages of pulmonary tuberculosis. Medical science monitor: international medical journal of experimental and clinical research, [s. l.], v. 11, n. 12, p. CR585-8, 2005.
GUTHRIE, R.; SUSI, A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics, [s. l.], v. 32, n. 32, p. 338–343, 1963.
HARRIS, J. et al. T Helper 2 Cytokines Inhibit Autophagic Control of Intracellular Mycobacterium tuberculosis. Immunity, [s. l.], v. 27, n. 3, p. 505–517, 2007.
HONG, J. Y. et al. Efficacy of IP-10 as a biomarker for monitoring tuberculosis treatment. Journal of Infection, [s. l.], v. 68, n. 3, p. 252–258, 2014.
HOSSEINI, S. et al. Enzyme-linked immunosorbent assay (ELISA) : from A to Z. [s.l.], Springer. 2018.
HSIANG, E. et al. Higher cost of implementing Xpert® MTB/RIF in Ugandan peripheral settings: implications for cost-effectiveness. The International Journal of Tuberculosis and Lung Disease, [s. l.], v. 20, n. 9, p. 1212–1218, 2016.
IMAZ, M. S.; ZERBINI, E. Antibody response to culture filtrate antigens of Mycobacterium tuberculosis during and after treatment of tuberculosis patients. International Journal of Tuberculosis and Lung Disease, [s. l.], v. 4, n. 6, p. 562–569, 2000.
ISEMAN, M. D. Tuberculosis therapy: past, present and future. European Respiratory Journal, [s. l.], v. 20, n. Supplement 36, p. 87S–94s, 2002.
JAYAKUMAR, A. et al. Serum biomarkers of treatment response within a randomized clinical trial for pulmonary tuberculosis. Tuberculosis, [s. l.], v. 95, n. 4, p. 415–420, 2015.
JUN CHO, H. et al. VEGF-C mediates RhoGDI2-induced gastric cancer cell metastasis and cisplatin resistance. International Journal of Cancer, [s. l.], v. 135, n. 7, p. 1553–1563, 2014.
KASSA, D. et al. Analysis of immune responses against a wide range of Mycobacterium tuberculosis antigens in patients with active pulmonary tuberculosis. Clinical and Vaccine Immunology, [s. l.], v. 19, n. 12, p. 1907–1915, 2012.
KIM, C. W. et al. Risk Factors Related with Mortality in Patient with Pulmonary Tuberculosis. Tuberculosis and Respiratory Diseases, [s. l.], v. 73, n. 1, p. 38, 2012.
KUNNATH-VELAYUDHAN, S. et al. Dynamic antibody responses to the Mycobacterium tuberculosis proteome. Proceedings of the National Academy of Sciences of the United States of America, [s. l.], v. 107, n. 33, p. 14703–8, 2010.
LEE, K. et al. CXCR3 ligands as clinical markers for pulmonary tuberculosis. The International Journal of Tuberculosis and Lung Disease, [s. l.], v. 19, n. 2, p. 191–199, 2015.
LEGESSE, M. et al. IgA Response to ESAT-6/CFP-10 and Rv2031 Antigens Varies in Patients With Culture-Confirmed Pulmonary Tuberculosis, Healthy Mycobacterium tuberculosis-Infected and Non-Infected Individuals in a Tuberculosis Endemic Setting, Ethiopia. Scandinavian Journal of Immunology, [s. l.], v. 78, n. 3, p. 266–274, 2013.
LIU, Q. Y. et al. Inflammation responses in patients with pulmonary tuberculosis in an intensive care unit. Experimental and Therapeutic Medicine, [s. l.], v. 15, n. 3, p. 2719–2726, 2018.
LIU, S. et al. RhoGDI2 Is Expressed in Human Trophoblasts and Involved in Their Migration by Inhibiting the Activation of RAC11. Biology of Reproduction, [s. l.], v. 90, n. 4, 2014.
LÓPEZ-RAMOS, J. E. et al. Improvement in the Diagnosis of Tuberculosis Combining Mycobacterium Tuberculosis Immunodominant Peptides and Serum Host Biomarkers. Archives of Medical Research, [s. l.], v. 49, n. 3, p. 147–153.e1, 2018.
LUBBERS, R. et al. Complement component C1q as serum biomarker to detect active tuberculosis. Frontiers in Immunology, [s. l.], v. 9, p. 2427, 2018.
LUO, F. et al. Ficolin-2 Defends against Virulent Mycobacteria Tuberculosis Infection In Vivo, and Its Insufficiency Is Associated with Infection in Humans. PLoS ONE, [s. l.], v. 8, n. 9, p. e73859, 2013.
LUO, L. et al. Antigens Rv0310c and Rv1255c are promising novel biomarkers for the diagnosis of Mycobacterium tuberculosis infection. Emerging Microbes and Infections, [s. l.], v. 6, n. 7, p. e64–e71, 2017.
LYASHCHENKO, K. et al. Heterogeneous antibody responses in tuberculosis. Infection and Immunity, [s. l.], v. 66, n. 8, p. 3936–3940, 1998.
MATTOS, A. M. M. et al. Increased IgG1, IFN-γ, TNF-α and IL-6 responses to Mycobacterium tuberculosis antigens in patients with Tuberculosis are lower after chemotherapy. International Immunology, [s. l.], v. 22, n. 9, p. 775–782, 2010.
MATTOS, A. M. M. et al. Detection of IgG1 antibodies against Mycobacterium tuberculosis DosR and Rpf antigens in tuberculosis patients before and after chemotherapy. Tuberculosis, [s. l.], v. 96, p. 65–70, 2016.
MAY, Y. L. et al. Cross-reactive immunity to Mycobacterium tuberculosis DosR regulon-encoded antigens in individuals infected with environmental, nontuberculous mycobacteria. Infection and Immunity, [s. l.], v. 77, n. 11, p. 5071–5079, 2009.
MENZIES-GOW, A. et al. Eotaxin (CCL11) and Eotaxin-2 (CCL24) Induce Recruitment of Eosinophils, Basophils, Neutrophils, and Macrophages As Well As Features of Early- and Late-Phase Allergic Reactions Following Cutaneous Injection in Human Atopic and Nonatopic Volunteers. The Journal of Immunology, [s. l.], v. 169, n. 5, p. 2712–2718, 2002.
MINATOGUCHI, S. et al. Low serum albumin as a risk factor for infection-related in-hospital death among hemodialysis patients hospitalized on suspicion of infectious disease : a Japanese multicenter retrospective cohort study. Renal Replacement Therapy, [s. l.], v. 4, n. 1, p. 1–7, 2018.
MURRAY, J. F.; SCHRAUFNAGEL, D. E.; HOPEWELL, P. C. Treatment of tuberculosis: A historical perspective. Annals of the American Thoracic Society, [s. l.], v. 12, n. 12, p. 1749–1759, 2015.
NIKI, M. et al. Evaluation of Humoral Immunity to Mycobacterium tuberculosis -Specific Antigens for Correlation with Clinical Status and Effective Vaccine Development. Journal of Immunology Research, [s. l.], v. 2015, p. 1–13, 2015.
OEHLERS, S. H. et al. Interception of host angiogenic signalling limits mycobacterial growth. Nature, [s. l.], v. 517, n. 7536, p. 612–615, 2015.
OMS - Organização Mundial da Saúde. Global tuberculosis report 2018. Geneva: World Health Organization, 2018. Disponível em: <http://www.who.int/tb/publications/global_report/en/>. Acesso em: 01 dez. 2018.
OMS - Organização Mundial da Saúde. High-priority target product profi les for new tuberculosis diagnostics: report of a consensus meeting. Geneva: World Health Organization, 2014. Disponível em: <https://www.who.int/tb/publications/tpp_report/en/>. Acesso em: 14 mai. 2018.
OMS - Organização Mundial da Saúde. Tuberculosis: A global emergency, WHO report on the TB epidemic. Geneva: World Health Organization, 1994. Disponível em: <http://apps.who.int/iris/handle/10665/58749>. Acesso em: 14 mai. 2018.
PARK, J. Y.; KRICKA, L. J. Interferences in Immunoassay. In: The Immunoassay Handbook, [s.l: s.n.], 2008. p. 403–416.
PARSONS, L. M. et al. Laboratory diagnosis of tuberculosis in resource-poor Countries: Challenges and opportunities, American Society for Microbiology (ASM), [s. l.], v. 24, n. 2, p. 314–350, 2011.
PITABUT, N. et al. Decreased plasma granulysin and increased interferon-gamma concentrations in patients with newly diagnosed and relapsed tuberculosis. Microbiology and Immunology, [s. l.], v. 55, n. 8, p. 565–573, 2011.
PITABUT, N. et al. Potential function of granulysin, other related effector molecules and lymphocyte subsets in patients with TB and HIV/TB coinfection. International Journal of Medical Sciences, [s. l.], v. 10, n. 8, p. 1003–1014, 2013.
POLENA, H. et al. Mycobacterium tuberculosis exploits the formation of new blood vessels for its dissemination. Scientific Reports, [s. l.], v. 6, n. 1, p. 33162, 2016.
PURI, L. et al. Xpert MTB/RIF for tuberculosis testing: access and price in highly privatised health markets. The Lancet Global Health, [s.l.], v. 4, n. 2, 94–95, 2016.
RIVA, M. A. From milk to rifampicin and back again: History of failures and successes in the treatment for tuberculosis, Journal of Antibiotics, [s.l.], v. 67, n. 9, p. 661–665, 2014.
REN, N. et al. Identification of new diagnostic biomarkers for Mycobacterium tuberculosis and the potential application in the serodiagnosis of human tuberculosis. Microbial Biotechnology, [s. l.], v. 11, n. 5, p. 893–904, 2018.
SAHIRATMADJA, E. et al. Plasma granulysin levels and cellular interferon-γ production correlate with curative host responses in tuberculosis, while plasma interferon-γ levels correlate with tuberculosis disease activity in adults. Tuberculosis, [s. l.], v. 87, n. 4, p. 312–321, 2007.
SAID, N. et al. RhoGDI2 suppresses lung metastasis in mice by reducing tumor versican expression and macrophage infiltration. Journal of Clinical Investigation, [s. l.], v. 122, n. 4, p. 1503–1518, 2012.
SALLUSTO, F.; MACKAY, C. R.; LANZAVECCHIA, A. Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science, [s. l.], v. 277, n. 5334, p. 2005–2007, 1997.
SANDHOLZER, C. et al. Effects of the apolipoprotein(a) size polymorphism on the lipoprotein(a) concentration in 7 ethnic groups. Human Genetics, [s. l.], v. 86, n. 6, 1991.
SCHMIDT, K. et al. Structure, function, and genetics of lipoprotein (a). Journal of Lipid Research, [s. l.], v. 57, n. 8, p. 1339–1359, 2016.
SECRETARIA DE VIGILÂNCIA EM SAÚDE. Implantação do Plano Nacional pelo Fim da Tuberculose como Problema de Saúde Pública no Brasil: primeiros passos rumo ao alcance das metas. Bol. Epidemiol., v. 49, n. 11, p. 1-18, 2018. Disponível em: <http://portalarquivos2.saude.gov.br/images/pdf/2018/marco/26/2018-009.pdf>Acesso em: 01 dez. 2018.
SENBAGAVALLI, P. et al. Major histocompatibility complex class III (C2, C4, factor B) and C3 gene variants in patients with pulmonary tuberculosis. Human Immunology, [s. l.], v. 72, n. 2, p. 173–178, 2011.
SERRA-VIDAL, M. et al. Immunogenicity of 60 novel latency-related antigens of Mycobacterium tuberculosis. Frontiers in Microbiology, [s. l.], v. 5, n. SEP, p. 517, 2014.
SHANG, Z. B. et al. Serum macrophage migration inhibitory factor as a biomarker of active pulmonary tuberculosis. Annals of Laboratory Medicine, [s. l.], v. 38, n. 1, p. 9–16, 2018.
SHARMA, S. K. et al. Comparison of TST and IGRA in diagnosis of latent tuberculosis infection in a high TB-burden setting. PLoS ONE, [s. l.], v. 12, n. 1, p. e0169539, 2017.
SHIMONO, N. et al. Hypervirulent mutant of Mycobacterium tuberculosis resulting from disruption of the mce1 operon. Proceedings of the National Academy of Sciences, [s. l.], v. 100, n. 26, p. 15918–15923, 2003.
SIEV, M. et al. Antibodies against mycobacterial proteins as biomarkers for HIV-associated smear-negative tuberculosis. Clinical and Vaccine Immunology, [s. l.], v. 21, n. 6, p. 791–798, 2014.
SIRECI, G. et al. Anti-16-Kilodalton Mycobacterial Protein Immunoglobulin M Levels in Healthy but Purified Protein Derivative-Reactive Children Decrease after Chemoprophylaxis. Clinical and Vaccine Immunology, [s. l.], v. 14, n. 9, p. 1231–1234, 2007.
SRIVASTAVA, V. et al. Macrophage-specific Mycobacterium tuberculosis genes: Identification by green flourescent protein and kanamycin resistance selection. Microbiology, [s. l.], v. 153, n. 3, p. 659–666, 2007.
STEINGART, K. R. et al. Commercial Serological tests for the diagnosis of active pulmonary and extrapulmonary tuberculosis: An updated systematic review and Meta-Analysis, PLoS Medicine, [s. l.], v. 8, n. 8, e1001062, 2011.
SUTHERLAND, J. S. et al. Analysis of Host Responses to Mycobacterium tuberculosis Antigens in a Multi-Site Study of Subjects with Different TB and HIV Infection States in Sub-Saharan Africa. PLoS ONE, [s. l.], v. 8, n. 9, p. e74080, 2013.
TAKENAMI, I. et al. Immunoglobulin G response to mammalian cell entry 1A (Mce1A) protein as biomarker of active tuberculosis. Tuberculosis, [s. l.], v. 100, p. 82–88, 2016.
THUONG, P. H. et al. Circulating granulysin levels in healthcare workers and latent tuberculosis infection estimated using interferon-gamma release assays. BMC Infectious Diseases, [s. l.], v. 16, n. 1, p. 580–589, 2016.
TONBY, K. et al. IP-10 measured by Dry Plasma Spots as biomarker for therapy responses in Mycobacterium Tuberculosis infection. Scientific Reports, [s. l.], v. 5, n. 1, p. 9223, 2015.
UCHIDA, Y. et al. Accelerated immunopathological response of mice infected with Mycobacterium tuberculosis disrupted in the mce1 operon negative transcriptional regulator. Cellular Microbiology, [s. l.], v. 9, n. 5, p. 1275–1283, 2007.
WADA, H. et al. Independent and Combined Effects of Serum Albumin and C-Reactive Protein on Long-Term Outcomes of Patients Undergoing Percutaneous Coronary Intervention. Circulation Journal, [s. l.], v. 81, n. 9, p. 1293–1300, 2017.
WANG, C. et al. Screening and identification of four serum miRNAs as novel potential biomarkers for cured pulmonary tuberculosis. Tuberculosis, [s. l.], v. 108, n. 1, p. 26–34, 2018.
WANG, Q. et al. MPT64 protein from Mycobacterium tuberculosis inhibits apoptosis of macrophages through NF-kB-miRNA21-Bcl-2 pathway. PLoS ONE, [s. l.], v. 9, n. 7, p. e100949, 2014.
XU, D.-D. et al. Association of the FCN2 Gene Single Nucleotide Polymorphisms with Susceptibility to Pulmonary Tuberculosis. PLOS ONE, [s. l.], v. 10, n. 9, p. e0138356, 2015.
XU, D. D. et al. Discovery and identification of serum potential biomarkers for pulmonary tuberculosis using iTRAQ-coupled two-dimensional LC-MS/MS. Proteomics, [s. l.], v. 14, n. 2–3, p. 322–331, 2014.
YI, B. et al. Depletion of RhoGDI2 expression inhibits the ability of invasion and migration in pancreatic carcinoma. International Journal of Molecular Medicine, [s. l.], v. 34, n. 1, p. 205–212, 2014.
YUAN, Y. et al. The 16-kDa alpha-crystallin (Acr) protein of Mycobacterium tuberculosis is required for growth in macrophages. Proceedings of the National Academy of Sciences of the United States of America, [s. l.], v. 95, n. 16, p. 9578–83, 1998.
YUAN, Y.; CRANE, D. D.; BARRY, C. E. Stationary phase-associated protein expression in Mycobacterium tuberculosis: Function of the mycobacterial α-crystallin homolog. Journal of Bacteriology, [s. l.], v. 178, n. 15, p. 4484–4492, 1996.
ZEITOUN, H. et al. Mycothiol acetyltransferase (Rv0819) of Mycobacterium tuberculosis is a potential biomarker for direct diagnosis of tuberculosis using patient serum specimens. Letters in Applied Microbiology, [s. l.], v. 65, n. 6, p. 504–511, 2017.
ZHANG, C. et al. Mycobacterium tuberculosis Secreted Proteins As Potential Biomarkers for the Diagnosis of Active Tuberculosis and Latent Tuberculosis Infection. Journal of Clinical Laboratory Analysis, [s. l.], v. 29, n. 5, p. 375–382, 2014.
ZHAO, Y. et al. IP-10 and RANTES as biomarkers for pulmonary tuberculosis diagnosis and monitoring. Tuberculosis, [s. l.], v. 111, p. 45–53, 2018.
Downloads
Published
How to Cite
Issue
Section
License
A reprodução total dos artigos da Revista em outros meios de comunicação eletrônicos de uso livre é permitida de acordo com a licença Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional.